leskats Dānijas centralizētajā siltumapgādes sistēmā un Kopenhāgenas siltumenerǵijas tirgū

Avedøre TEC Kopenhāgenā

Poḷina Ivanova, Māris Balodis, Oḷegs Linkevičs, Ilmārs Stuklis

Dānijas centralizētā siltumapgādes sistēma

Pirmā termoelektrocentrāle tika uzbūvēta 1903. gadā Dānijā. Tā bija atkritumu sadedzināšanas stacija, kura nodrošināja atkritumu pārstrādi un ražoja siltumenerğiju un elektroenerğiju tuvējai slimnīcai. Laika posmā no 1920. līdz 1930. gadam attīstījās kolektīvā centralizētā siltumapgādes sistēma (CSS), kas nodrošināja patērētāju siltumapgādi, izmantojot siltuma tīklu infrastruktūru. Paplašinājās kogenerācijas elektrostaciju izmantošana siltumenerǵijas ražošanai CSS vajadzīgām. 1970. gadā apmēram 30% no visām mājām Dānijā tika pieslēgti CSS [1].

Decentralizētās siltumapgādes lietotāji apkurei pārsvarā izmantoja šķidro kurināmo. 1973. - 1974. gada enerḡētikas krīze parādīja, ka ir svarīgi taupīt enerǵiju, lai samazinātu atkarību no importētā kurināmā un siltumenerǵijas ražošanas izmaksas. Tika nolemts pilsētās paplašināt centralizētās
siltumapgādes sistēmas zonas un palielināt kog̀enerācijas staciju skaitu [1]. 1979. gadā tika pieñemts pirmais Siltumenerǵijas piegādes likums, kas iezīmēja jaunas ēras sākumu publiskajā siltumenerǧijas plānošanā, kura pastāv joprojām [1].

Šodien Dānijā ap 63% no dzīvojamām mājām pieslēgti CSS, kas nodrošina siltumenergijiu apkures un karstā ūdens vajadzībām [1]. Salīdzinājumam, Latvijā ar siltumenerg̣iju centralizēti ir apgādāti apmēram 30% no siltumenerğ̀jas patērētājiem, Rīgā - ap 70\%.

Dānijas CSS attīstības hronoloǵija sniegta 1. tabulā.
Dānijā siltumenerǵija centralizētajai siltumapgādes sistēmai tiek ražota lielās un mazās termoelektrocentrālēs (TEC), centralizētās siltumapgādes iekārtās (district heating units) un daļēji to nodrošina pašražotāji ${ }^{1}$ (autoproducers), t.i., rūpniecības uzṇēmumi, dārzkopības un atkritumu savākšanas iestādes (1. att.). Kopš 1990. gada palielinājās mazo TEC, centralizēto siltumapgādes iekārtu un pašražotāju loma siltumenerǵijas ražošanā. Tomēr joprojām liels ieguldījums CSS

[^0]

1. attḕls. CSS siltumenerǵijas ražǒšanas avoti [3]
saglabājās lielām TEC. 2017. gadā kopējais saražotais siltumenerg̀ijas daudzums centralizētajai siltumapgādes sistēmai bija 135,6 PJ [3].

Dānijā siltumenerǵijas ražošanai centralizētajā siltumapgādes sistēmā tiek izmantoti atjaunīgie un fosilie energoresursi, kā arī atkritumi un elektroenergija (2. att.). Kopš

2. attēls. Kurināmā patēriņš (procentuālais sadalijums) siltumenerǵijas ražošanai centralizētajā siltumapgādes sistēmā [3]
1990. gada būtiski pieauga atjaunīgo energoresursu izmantošana siltumenerğijas ražošanā, un tā rezultātā saruka oglu un naftas produktu izmantošana. Kopš 2010. gada samazinājās dabasgāzes lietošana. Lai darbinātu siltumsūkņus un elektriskos katlus, pēdējos gados pieaugusi elektroenerǧijas izmantošana siltumenerǧijas ražošanā.

1. tabula. CSS attistitiba Dānijā [1], [2]

CSS attistibas posmi	Gads	Notikums
Uzmanība pievērsta energoefektivitātei un energoapgādes drošumam	1973-1974	Enerǵētikas krīe pamudina dāņus pievērst uzmanību jautājumam par kurināmā neatkarību un motivē uzlabot energoefektivitāti.
	1976-1979	Pirmais enerǵētikas plāns - ilgtermiņa enerǵētikas politikas pamats. Izveidota Dānijas enerǵētikas aǵentūra. Pirmais Siltumenerǵijas piegādes likums - sākums siltumenerǵijas plānošanai, kas pastāv joprojām.
	1981-1982	Siltumenerǵijas plānošana visā valstī. Pielietota zonēšana (CSS zonā ierobežota cita veida siltumapgādes izmantošana), lai izveidotu efektivvu energosistēmu ar samazinātu CO_{2} emisiju daudzumu.
Interese par vietējo kurināmo	1984	Ziemeljūrā sākas dabasgāzes ieguve. Energētikas ministrijas lūgums uzstādit gāzes iekārtas elektrostacijās.
	1985-1986	Parlaments nolemj neizmantot kodolenerǵiju. Ogles tiek izslēgtas no siltumenerǵijas ražošanas plāniem. Tiek palielināti enerḡētikas nodokli, jo samazinās naftas cena. Koǵenerācijas vienošannās (cogeneration agreement): mazas kogenerācijas stacijas ir galvenā enerǵētikas politikas prioritāte.
	1990	Politiskās vienošanās palielināt dabasgāzes kogenerācijas elektrostaciju un biomasas izmantošanu siltumenerǵijas ražošanai CSS. Vienošanās palielināt vēja elektrostaciju jaudas.
Pāreja no nacionālās plānošanas uz projektu pieeju	1990	Siltumenerǵijas piegādes likuma pārskatišana - jauna plānošanas sistēma. Plānošanas direktīvas un vadlīnijas kurināmā izvēlei. Visu pašvaldību nodrošināšana ar koǵenerācijas stacijäm.
	1992	Subsidiju ieviešana, lai atbalstitu energoefektivitāti, kogenerācijas stacijas un atjaunīgos resursus.
	1993-2000	Politiskās vienošanās par biomasas izmantošanu koǵenerācijas stacijās. Pārskatīts Siltumenerǵjias piegādes likums. Parlaments nolemj uzlabot nosacijumus 250 mazām un vidējā lieluma kogenerācijas stacijām, kuras atrodas ārpus lielām pilsētām.
Uzmanība pievērsta klimatam, atjaunīgiem energoresursiem un energoefektivitātei	2008	Politiskās vienošanās atbalstiti vēja enerǵiju un citus atjaunīgos enerǵijas resursus. Kompānija Ørsted (bijusī Dong Energy) pieñem lēmumu visas lielās og,u un dabasgāzes koǵenerācijas elektrostacijas (Herning, Avedøre, Studstrup, Skaerbaek, Asnæs, Esbjerg) lïdz 2022. gadam pārveidot darbam ar biokurināmo (pārsvarā koksnes granulām un škeldu) [2].
	2012	Svarīgas politiskās vienošanās par Dānijas enerǵētikas politiku periodam no 2012. Iİdz 2020. gadam. Politika ietver daudzas ambiciozas iniciatīvas un investīcijas energoefektivitātē, atjaunīgajā enerǵjijā un energosistēmā.
	2020	Vienošanos realizācijas rezultātā sagaidāms, ka 2020. gadā 50% no elektroenerǵjijas patēriņa tiks nodrošināti ar vēja enerǵiju, vairāk nekā 35% no enerǵijas galapatēriṇa - ar atjaunīgiem resursiem un būs vērojams enerǵijas patēriṇa samazinājums par 12\% salīidzinājumā ar 2006. gadu.

3. attēls. Kopenhāgenas centralizētā siltumapgādes sistēma [10]

4. attēls. Siltumenerǵijas pieprasijums 2013. gadā (iekrāsots) un 2025. gadā (tonēts) [10]
(Apgabalu atšifrējums: VEKV - Roskilde/Hedehusene/Taastrup; VEKN - Hvidovre/Glostrup/Albertslund; CAML - Amagerland; CHUS - Brønshøj/Husum/Vanløse; CMID - Frederiksberg/Nørrebro; CNOR - Gladsaxe/Gentofte; CVAL - Valby; NORDHAVN - Nordhavn; VESTERBRO - Vesterbro; CTAR - Tårnby; VF - Herlev/Ballerup; DHCV Steam Centrum; DSMV - Østerbro (tvaiks); KONN - ziemeļu Østerbro (pārēja no tvaika uz karsto ūdeni); KONS - dienvidu (entrum (pāreja no tvaika uz karsto ūdeni))
2. tabula. Siltumenerǵijas ražošanas avoti Kopenhāgenā [11], [14]

ledalijums	Ražošanas avota veids	Ražošanas avots
Prioritārās ražošanas jaudas	Atkritumu sadedzināšanas stacijas, ǵgeotermālās un siltumsūkņu iekārtas	Atkritumu sadedzināšanas elektrostacijas: - Amager Ressource Center - Vestforbrænding - ARGO - Rensningsanlægget Lynetten G̦eotermālās un siltumsūknu iekārtas
Bāzes jaudas	Kogenerācijas elektrostacijas	Kogenerācijas elektrostacijas: - Amager - Avedøre - H.C. Ørsted Siltuma akumulatori
Pīka un rezerves jaudas	Katli	Lieli/mazi pīka un rezerves katli

Dānijas lielākajai energokompānijai Ørsted 2006. gadā kurināmā bilance enerǵijas ražošanai bija šāda: ogḷu īpatsvars veidoja 66%, dabasgāze - 18%, naftas produkti - 6%, atkritumi -3%, biomasa - 7\% [2]. Pēc lielāko oglu un gāzes termoelektrocentrāļu (ar kopējo jaudu 1272 Mwe/2277 MWt) rekonstrukcijas 2023. gadā ir plānots, ka biomasas īpatsvars palielināsies līdz 95\%, bet gāzes īpatsvars samazināsies līdz 5%.

Vēl viena tendence Dānijas energ̀ētikas sektorā ir saistīta ar dabasgāzes aizvietošanu ar biogāzi, kas, atšk̦irībā no Latvijas, netiks sadedzināta elektroenerǵjijas izstrādei iekšdedzes dzinējos lokāli ieguves vietā, bet tiks ievadīta Dānijas gāzes pārvades tīklā.

Perspektīvā centralizētā siltumapgādes sistēma joprojām būs galvenais elements Dānijas energosistēmā. Jau šogad pusi no elektroenerǵijas pieprasījuma nodrošinās vēja elektrostacijas. Elastīga CSS ar siltumenerǵijas akumulēšanu ir nepieciešama, lai nodrošinātu mainīgās vēja g̀enerācijas integrāciju energ̣ijas ražošanas procesā. Tādējādi centralizētā siltumapgādes sistēma ir nepieciešama ne tikai klimata mērḳu sasniegšanai, bet arī balansēšanas nodrošināšanai energosistēmā [1].

Kopenhāgenas centralizētā siltumapgādes sistēma

Kopenhāgenas centralizētā siltumapgādes sistēma ir sociāli ekonomiska sistēma (social economic network), kuru veido siltumenergijijas pārvades dalībnieki, siltumenerǧijas ražošanas elektrostacijas, organizācijas, likumdošana un noteikumi, kuri pārvalda darījumus un siltumenerǵijas piegādi [5].

Siltumenerğiju g̀nerē savstarpēji konkurējoši uzṇēmumi, kuri izvietoti dažādos pilsētas rajonos un izmanto dažādas tehnoloǵijas [5].

Kopenhāgenas CSS ir viena no lielākajām un sarežğītākajām siltumapgādes sistēmām pasaulē [6]. Tā ir integrēta centralizētā siltumapgādes sistēma, ko veido divdesmit sadales un trīs pārvades siltumenerğijas uzņēmumi [7].

Kopenhāgenas centralizētās siltum-

Termoelektrostacijas Kopenhāgenā. Augšā no kreisās: H. C. Ørsted TEC, Svanemølle TEC; apakšā no kreisās: Amager TEC, Amagerværket TEC
apgādes sistēmas mērogs [1], [8]:

- 500000 lietotāji;
- kopējā apsildāmo ēku platība 75 milj. m^{2};
- siltumenerğijas pārdošana $30600 \mathrm{TJ} /$ gadā (ap $8500 \mathrm{GWh} /$ gadā);
- siltumenerǵijas ražošana $36000 \mathrm{TJ} /$ gadā (ap $10000 \mathrm{GWh} /$ gadā);
- 15% no visa siltumenerǵijas pieprasijuma Dānijā.

Siltumenerǵijas pārvades un atkritumu apsaimniekošanas uzṇēmumi pieder pašvaldībām. Savukārt 20 siltumenerğijas sadales uzṇēmumi pieder pašvaldībām vai patērētājiem. Tā visi uzṇēmumi ir ieinteresēti sadarboties un piedāvāt patērētājiem izmaksu ziṇā efektīvus risinājumus [1].

Kopenhāgenas centralizētās siltumapgādes sistēmas mugurkaulu veido 180 km pārvades siltumtīkls un siltuma akumulācijas tvertnes. Spiediens pārvades tīklā ir 25 bar un maksimālā temperatūra - $110{ }^{\circ} \mathrm{C}$. Pārvades siltumtīkls ir pievienots sadales siltumtīkliem, izmantojot siltummainus [1], [9].

Centralizēto siltumapgādes sistēmu Kopenhāgenā veido četri piegādātāji: CTR (Metropolitan Copenhagen Heating Transmission Company), VEKS (Vestegnens Kraftvarmeselskab), HOFOR (Hovedstadens Forsyning), VF (Vestforbrcending). Uzṇēmumu siltumenerǵijas piegādes zonas atspoguḷotas 3. attē̄ā [10].

Centralizētā siltumapgādes sistēma sastāv no vairākām siltumapgādes sadales zonām (distribution areas) [10]. Vēsturiskais un gaidāmais siltumenerǵijas pieprasijums siltumapgādes zonās atspogulots 4. attēlā.

HOFOR ir lielākais siltumenerǵijas sadales uzṇēmums, kuram pieder siltumapgādes sistēma ar tvaika siltumnesēju. Tvaika siltumapgādes sistēma tiek integrēta kopējā centrali-
zētajā siltumapgādes sistēmā. Tvaika siltumapgādes sistēmu var transformēt par karstā ūdens siltumapgādes sistēmu, bet ne otrādi. Tvaika-ūdens siltummaiñi ir izvietoti H.C. Orsted un Amager elektrostacijās [1], [11]. HOFOR siltumapgādes zonā tvaika siltuma tīkli veido ap 20% no kopējā siltumtīklu garuma, ko līdz 2022. gadam ir paredzēts pārbūvēt par karstā ūdens siltumtīkliem [9]. HOFOR ir lielākais uzņēmums pēc siltumenerǵijas piegādes apjoma (4 $794 \mathrm{GWh}, 2015$). HOFOR pieder Kopenhāgenas pašvaldībām, kas īsteno uzṇēmuma pārvaldību [1], [12].

CTR ir otrais lielākais uzņēmums pēc siltumenerǵijas piegādes apjoma ($4745 \mathrm{GWh}, 2015$). Tas pārdod siltumenerǵiju centralizētās siltumapgādes sadales uzṇēmumiem: HOFOR un VEKS [12].

VEKS ir trešais lielākais uzņēmums pēc piegādātā siltumenergijas apjoma (2 $557 \mathrm{GWh}, 2015$). VEKS darbojas gan Kopenhāgenā, gan ārpus tās robežām. Tas pieder pašvaldībām. VEKS ir pārvades uzņēmums, bet tam pieder arī koǵenerācijas stacijas un sadales siltumtîkli [12].
$C T R$ un VEKS siltumapgādes sistēmas ir apvienotas, bet abi uzñēmumi darbojas neatkarīgi viens no otra [13]. Pārvades siltumtîkls, kurš pieder CTR un VEKS, savieno divas kogenerācijas stacijas un trīs atkritumu sadedzināšanas stacijas ar 20 siltumenerǵijas sadales uzn̄ēmumiem. Šādi tiek nodrošināta optimāla siltumenerǵijas ražošana un sadale, iespēja elastīgāk apmainīties ar siltumenerğiju starp dažādām siltumapgādes zonām [1]. CTR un VEKS savienojuma kapacitāte ir $335 \mathrm{MJ} / \mathrm{s}$ (MW) [5].

Vestforbrcending (VF) nodarbojas gan ar siltumenerǵijas sadali, gan ar to siltumenerǵijas pārpalikumu pārvadi, kuri veidojas vasarā [1].

CSS darbība tiek vadīta CTR un VEKS vadības telpās, kas izvietotas, attiecīgi, Frederiksberg un Albertslund rajonos [9].

Siltumenerǵijas ražošana Kopenhāgenas CSS

Kopenhāgenas centralizētās siltumapgādes sistēmas avoti iedalīti trīs grupās: 1) prioritārās; 2) bāzes; 3) pīḳa un rezerves jaudas (2. tab.) [11]. Pašlaik siltumenerğijas ražošanu nodrošina trīs kogenenerācijas elektrostacijas un četras atkritumu sadedzināšanas stacijas, kā arī divi siltuma akumulatori. Papildus siltumenerğiju ražo arī geotermālās un siltumsūkņu stacijās un pīka/rezerves katlos.

Siltumsūkņi un ǧeotermālās stacijas strādā testa režīmā un nenodarbojas ar komerciālu siltumenerǵijas ražošanu. Atkritumu sadedzināšanas stacijas īsteno prioritāro ražošanu divu iemeslu dēl: 1) atkritumus nepieciešams utilizēt un 2) atkritumu elektrostacijām ir zemas ekspluatācijas mainīgās izmaksas (kaut gan pēdējā laikā atkritumus un biomasu nācies importēt, kas ievērojami sadārdzina siltumenerğijas ražošanu šajās stacijās). Prioritārās ražošanas stacijās siltumenerǵijas iepirkuma cena tiek ierobežota.

Bāzes jaudu nodrošina lieljaudas koǵenerācijas elektrostacijas: Ørsted piederošās Avedøre, Svanemølle un H.C. Ørsted elektrostacijas; HOFOR piederošā Amagerverket elektrostacija.

Amager ir Dānijas vismodernākā atkritumu sadedzināšanas elektrostacija, kas tika nodota ekspluatācijā 2017. gada 30. martā. Tajā ir paredzēts sadedzināt ap 400 tūkst. tonnu pilsētas atkritumu, iegūstot elektrisko jaudu $63 \mathrm{MW}_{\mathrm{el}}$ un siltuma jaudu $247 \mathrm{MW}_{\mathrm{th}}$. TEC Amager dizainu izstrādāja Bjarke Ingels Group, un stilistiski tā veido vienu ansambli ar Amager kalnu slēpošanas trasi.

Termoelektrocentrāles Amagervcerket pirmais un otrais energobloks (AMV1 un AMV2) tika uzbūvēti 1971. - 1972. gadā oglu un naftas produktu dedzināšanai. Katra bloka jauda ir $110 \mathrm{MWel} / 190 \mathrm{MWth}$. Amagervcerket trešais oglu energobloks (AMV3; $215 \mathrm{MWel} / 330 \mathrm{MWth}$) ekspluatācijā tika nodots 1989. gadā. 2009. gadā no Amagerverket uz Kopenhāgenas centru ir uzbūvēts 4 km garš tunelis ar siltuma trasi. Tas ir Dānijā lielākais centralizētās siltumapgādes tunelis ar 4,2 metru diametru. Sākotnēji Amagervcerket piederēja DONG Energy, pēc tam 2005. gadā to nopirka Vattenfall, bet 2013. gadā pārpirka HOFOR. HOFOR līdz 2020. gadam plāno aizstāt Amagervcerket energobloku Nr. 3 ar jaunu elektrostacijas
bloku (AMV4), kas tiks kurināts tikai ar biomasu [15].
Termoelektrocentrāle Avedøre (Avedørevcerket) atrodas Kopenhāgenas pilsētas dienvidu daḷā. Tā ir viena no efektīvākajām elektrostacijām Dānijā ar kopējo kurināmā izmantošanas koeficientu 94% un lietderības koeficientu elektroenerǵijas izstrādē ap 49% (kondensācijas režīmā). Avedøre 1 - pirmais energobloks ar kopējo elektrisko/siltuma jaudu 250 $\mathrm{MW}_{\text {el }} / 348 \mathrm{MW}_{\text {th }}$ ir uzbūvēts 1990. gadā un iepriekš izmantoja ogles. 2015. gadā tas tika pārbūvēts koksnes granulu izmantošanai. Avedøre 2 - otrais energobloks ar kopējo elektrisko/ siltuma jaudu $585 \mathrm{MW}_{\mathrm{el}} / 570 \mathrm{MW}_{\mathrm{th}}$ ir uzbūvēts 2001. gadā un enerǵijas ražošanai izmanto dabasgāzi, koksnes granulas un salmus. Šajā energoblokā darbojas gāzes turbīnas un viens no lielākajiem biomasas katliem pasaulē [16].

Termoelektrocentrāle H. C. Ørsted (H. C. Ørstedvcerket), kas atrodas Sydhavnen rajonā, līdz 1994. gadam izmantoja akmeņogles, bet vēlāk tika pārbūvēta dabasgāzes dedzināšanai. Mūsdienās tās elektriskā jauda ir $185 \mathrm{MW}_{\mathrm{el}}$, bet siltuma jauda $815 \mathrm{MW}_{\mathrm{th}}$ [17].

Svanemølle kog̀enerācijas elektrostacija, līdzīgi kā H. C. Ørsted, līdz 1985. gadam dedzināja importētas akmeņogles, bet vēlāk pārslēdzās uz dabasgāzi. Esošās gāzes turbīnas šajā TEC darbojas kopš 1995. gada un nodrošina elektrisko jaudu $81 \mathrm{MW}_{\mathrm{el}}$ un siltuma jaudu $355 \mathrm{MW}_{\mathrm{th}}$ [18].

KM Lynettefoellesskabet izmanto siltumu, kas ir iegūts notekūdeņu termiskās apstrādes procesā, lai saražotu ap 7 MWth siltumenergijas.

Vestforbraending ir viena no lielākajām Kopenhāgenas atkritumu sadedzināšanas rūpnīcām. Tā pārstrādā ap $26 \mathrm{t} / \mathrm{h}$ atkritumu un iegūst ap $17 \mathrm{MW}_{\text {th }}$ siltumenerǵijas. 2006. gadā Babcock \& Wilcox Vølund $A B$ veica ražotnes rekonstrukciju, kuras rezultātā tika pārbūvēta atkritumu pārstrādes līnija Nr. 5 un līdz ar absorbcijas tipa siltumsūkni uzstādīts dūmgāzes kondensācijas ekonomaizers.

Cits arhitektūras šedevrs ir KARA/NOVEREN atkritumu sadedzināšanas rūpnīca, kas 2014. gadā tika uzbūvēta Kopenhāgenas dienvidu rajonā Roskilde. Energitårnet ("Enerğijas tornis") projekta autors - Eriks van Egerāts (Erick Van Egeraat).

TEC Køge Kraftvarmevcerk ir kogenerācijas stacija, kas atrodas Kēges ostā, Kēgē. Sākotnēji TEC piederēja grīdas dèḷu ražotājam Junckers Industrier A/S, bet kopš 2012. gada to pārn̦ēma VEKS. Patlaban TEC Køge jauda ir $24 \mathrm{MW}_{\mathrm{el}} / 81 \mathrm{MW}_{\mathrm{th}}$
3. tabula. Piemērs: tipiskās CSS struktūras Dānijā [12]

Maza mēroga CSS	Liela mēroga CSS	Kopenhāgenas CSS
Vietējie CSS sadales uzñēmumi (arī ražo)	Lieli centralizēti ražotāji	Lieli centralizēti ražotaji
Galalietotāji	CSS pārvades uzņēmumi	CSS pārvades uzñèmumi
-	Vietējie CSS sadales uzņēmumi	Vietējie CSS sadales uzņēmumi
-	Galalietotàji	Galalietotāji
- Siltumapgādes sistēma un ražotāji pieder vietējai pašvaldībai vai komunālo pakalpojumu uzñēmumu kooperativam. - Lielākā dalala CSS ir šāda tipa.	- Galvenie ražotāji pievienoti centralizētās siltumapgādes pārvades siltumtīklam. Pārvades uzñēmumi pērk siltumenerǵjiju no ražotājiem un pārdod sadales uzñēmumiem, kuri pēc tam pārdod siltumu galalietotājiem. - Pārvades uzņēmumiem pārsvarā pieder siltumenerǵjijas avoti, kuri nodrošina pīka slodzi, un reti - enerǵjijas ražǒšanas avoti, kuri nodrošina bāzes izstrādi. - Dažas lielas CSS ir šāda tipa.	- Lielie ražotāji pārdod siltumenerǵiju pārvades uzñēmumiem. Varmelast.dk prognozē, organizē, koordinē un uzrauga šo siltumenerǵjijas izstrādes procesu. - Pārvades uzñēmumi pārdod siltumenerǵiju CSS sadales uzñēmumiem, kuri pēc tam pārdod siltumenergiju galalietotājiem.

un par kurināmo tiek izmantota škelda.
Koġenerācijas elektrostacijas kopā ar prioritāro ražošanu veido pamatu siltumenerğijas nodrošinājumam Kopenhāgenā. Siltumenerǵijas un elektroenerg̀ijas ražošanas optimizācijai Varmelast.dk izmanto divus siltuma akumulatorus Amagerverket un Avedore kogenerācijas elektrostacijā [11]. Amagervcerket ir uzstādīta $24000 \mathrm{~m}^{3}$ spiediena siltuma akumulācijas tvertne, kas ir pieslēgta tieši siltumenerǵijas pārvades tỉkliem (25 bar spiediens). Līdzīgas spiediena tvertnes ir uzstādītas arī Avedore elektrostacijā. Tur ir uzstādītas divas šādas ($2 \times 24000 \mathrm{~m}^{3}$) tvertnes. TEC Avedore kopējais uzglabājamas enerǵijas apjoms ir $2400 \mathrm{MW}_{\mathrm{th}}$ ar uzlādes/izlādes kapacitāti 300 MW . Apmēram 30 "pīḳu" (galotṇu) iekārtas, kuras pieder CTR, VEKS, HOFOR, tiek izmantotas kā rezerves jaudas atteicēm ziemas laikā. Ir pieejami četri lieli "pīka" un rezerves jaudas katli Svanemolle un H.C. Ørsted kogenerācijas elektrostacijās. Šie katli tiek izmantoti līdznoslodzei (intermediate load), kad pieprasījums pēc siltumenerg̀ijas ir lielāks nekā parasti, t.i., ziemas laikā, rīta slodžu maksimuma stundās un koğenerācijas elektrostaciju atteiču gadījumā [11].

Siltumenerǵijas tirgus veidi Dānijā

Dānijā centralizētās siltumapgādes sistēmas sektorā darbojas vairāki dalībnieki: lieli centralizēti ražotāji, CSS pārvades uzņēmumi, mazas vietējās CSS sadales un siltumenerǵijas ražošanas plānošanas uzṇēmumi, piemēram, Varmelast.dk, kas koordinē siltumenerǵijas ražošanu Kopenhāgenas centralizētajā siltumapgādes sistēmā. Tipiskās CSS tirgus struktūras Dānijā sniegtas 3. tabulā [12].

Piemēram, lieli centralizētie siltumenerg̀ijas ražotāji ir $\emptyset r s t e d ~ u n ~ H O F O R$. Tiem pieder kogenerācijas un atkritumu sadedzināšanas stacijas, kuras pievienotas pārvades siltumtīkliem. Šie uzņēmumi pārdod siltumenerğiju pārvades uzn̦ēmumiem, piemēram, CTR un VEKS. Pārvades uzṇēmumi nodrošina siltumenerg̀ijas piegādi līdz sadales siltumtīkliem. Pārvades uzñēmumiem var piederēt kogenerācijas stacijas vai pīka slodzes ražošanas avoti. Pārvades uzṇēmumi pieder pašvaldību konsorcijiem. Sadales uznēmumi ir atbildīgi par siltumenerǵijas nogādāšanu līdz galalietotājiem un rēķiniem par izlietoto siltumenergijiju. Parasti sadales uzņēmumi pieder pašvaldībām [12].

Centralizēto siltumapgādi regulē Siltumenerǵijas piegādes likums (Heat Supply Act). Šis dokuments regulē siltumenerǵijas piegādes procesu iekārtām ar jaudu virs 250 kW un kog̀nereācijas iekārtām ar siltuma jaudu līdz 25 MW . Lielo koğenerācijas staciju darbību regulē Elektroenergijijas likums (Electricity low), bet siltuma piegādi no lielām kog̀enerācijas stacijām Siltumenerǵijas piegādes likums. Atbilstoši tam siltumenerǵija jāražo koğenerācijas iekārtās [12].

Saskaņā ar Siltumenergijas piegādes likumu cenai, par kuru patērētāji pērk siltumenerǵiju, jānosedz nepieciešamās (necessary) izmaksas. Siltumenerg̀ijas piegādes uzņēmumiem nav atllauts veidot peḷnu. Bezpeḷnas princips pasargā patērētājus no dabīgā monopola ḷaunprātīgas izmantošanas CSS. Tomēr tas nepasargā patērētājus no neefektīvas centralizētās siltumapgādes vadības un darbības, tādējādi centralizētās siltumapgādes uzņēmumi ikgadēji veic salīdzinošo novērtēšanu (benchmarking). Tas tiek darīts brīvprātīgi [12].

5. attēls. Siltumenerǵijas uzṇēmumu apvienība un Varmelast.dk pienākumi

Kopenhāgenas siltumenergíjas tirgus arhitektūra

Kopenhāgenas CSS tirgus organizators ir Varmelast.dk (5. att.) [11].

Atšķirībā no Rīgas, Kopenhāgenā veiksmīgi darbojas ikstundas nākamās dienas siltumenerg̀ijas tirgus, kurā piedalās pilsētas lielākie siltumenerğijas ražotāji un kuru pārvalda Varmelast.dk. Ikdienas izsole nodrošina zemākas siltumenerǵijas cenas Kopenhāgenas iedzīvotājiem.

Varmelast.dk īsteno siltuma slodzes sadali starp enerǵijas ražošanas avotiem, ievērojot siltumenerǵijas ražošanas robežizmaksas (marginal production prices). Piemēram, kog̀enerāciju elektrostaciju gadījumā, siltumenerǵijas ražošanas robežizmaksas aprēḳinātas pēc šādas formulas [5], [14]:
siltumenerğijas ražošanas robežizmaksas = kurināmā izmaksas + emisiju izmaksas + ekspluatācijas izmaksas + nodokḷu izmaksas - ieguvumi no elektroenerǵjijas pārdošanas - subsīdijas.

Siltumenerǵijas pārdošanas cena tiek noteikta ar divpusējiem līgumiem (bilateral contracts) [5]. Papildus siltumenerg̀ijas ražošanas robežizmaksām tiek ievērotas investīciju un darbaspēka izmaksas [14].

Veicot siltuma slodzes sadalijuma plānus, Varmelast.dk ievēro pieeju - siltumenerǧijas nodrošināšana ar vismazākajām izmaksām (least-cost approach) [5].

Ikdienas siltumenerğijas ražošanas avotu izstrādes plāni tiek gatavoti, pamatojoties uz ekonomisko optimizāciju, ievērojot šādus kritērijus [5]:

- siltumenerǵijas un elektroenerǵijas pieprasijuma prognoze;
- prioritārās ražošanas jaudas;
- ražošanas izmaksas (kurināmais, ekspluatācijas izmaksas, nodokḷi, CO_{2} kvotas, ienākumi no elektroenerǵijas pārdošanas);
- hidrauliskie ierobežojumi (transmission bottlenecks).

4. tabula. Siltumenerǵijas plāna izstrāde nākamajai dienai (day ahead) [5], [11]

Laiks	Dalibnieks	Darbiba	Darbibas aprasts
7:45	Varmelast.dk	Siltumenerǵijas pieprasijuma prognoze	Varmelast.dk nosūta siltumenerǵijas pieprasijuma prognozi ražotājiem. Tā tiek izstrādāta, pamatojoties uz meteorologiskiem datiem [13]
8:30	Ražotaji	Siltumenerǵijas piedāvājumi (heat bid)	Siltumenerǵijas ražotāji izveido tabulas, kurās tiek atspogulota informācija par generācijas pieejamību, tās jaudu un siltumenerǵijas ražošanas robežizmaksām. Tabula tiek nosūtita Varmelast.dk
9:00	Varmelast.dk	Siltumenerǵijas pieprasijumi no ražotājiem (anglu val. order)	Sañemot informāciju no ražotājiem, Varmelast.dk aprēķina, kā vislēt̄āk nosegt siltumenerǵjijas pieprasijumu. Pēc veiktiem aprēkiniem Varmelast.dk nosūta pieprasijumus ražotajiem, kuros noteikts, cik daudz siltumenerǵijas jāsaražo nākamajā dienā
9:45	Ražotaji	Provizoriskie siltumenerǵijas plāni	Sañemot siltumenerǵijas pieprasijumus, ražotāji apręk̦ina, kā tos nodrošināt vislētākajā veidā, ievērojot elektroenerǵijas ražošanu, kurināmā cenu, CO_{2} kvotas cenu un nodoklus. Pēc veiktiem aprēķiniem ražotāji nosūta detalizētus plānus, t.i., ražošanas avotu izstrādes pa stundām, kā arī regulē̌̌anas pakalpojumu izmaksas
10:00	Varmelast.dk	Gala siltumenerǵijas plāni	Sañemot informāciju no ražotājiem, Varmelast.dk veic gala optimizāciju, ievērojot ierobežōjumus siltumapgādes sistēmā un optimālo siltuma akumulācijas tvertņu izmantošanu AMV (Amagerværket) un AVV (Avedøreværket) elektrostacijās. Gala siltumenerǵijas plāni tiek nosūtititi ražotajiem. Tajos definēts, cik daudz siltumenerǵijas jāsaražo (pa stundām) katram enerǵijas ražošanas avotam nākamajā dienā

Siltumenerǵijas ražošanas plānu sastādǐšana un optimizācija ir sarunu procedūra starp ražotajiem un Varmelast. $d k$ (4. tab.). Siltumenerǵijas piedāvājumi nākamajai dienai sākas tekošajā dienā pirms plkst. 8:00. Tā kā siltumenergíijas ražotāji arī piedalās elektroenerǵijas tirgū, tad galīgajam siltumenerǵijas plānam jābūt gatavam pirms plkst. 10:30, lai ražotāji varētu noteikt, cik daudz elektroenerǵijas viṇi varēs piedāvāt elektroenerg̀ijas tirgū. Piedāvājumu elektroenerǧijas tirgū jāiesniedz līdz dienas vidum [11], [5].

No 4. tabulas secināms, ka siltuma slodzes sadalījums starp enerǵijas ražošanas avotiem notiek, ievērojot siltumenerǧijas ražošanas robežizmaksas, sakārtojot tās augošā secībā, t.i., pirmais tiek izvēlēts siltumenerǵijas ražošanas avots ar viszemākajām siltumenerǵijas ražošanas robežizmaksām, bet pēdējais - siltumenerǵijas ražošanas avots ar visaugstākajām siltumenerǵijas ražošanas robežizmaksām.

Prognozes un realitāte atšķiras, tādējādi siltumenerg̊ijas ražošanas plāna koriǵéjumi notiek piecas reizes dienā (5. tab.), ievērojot siltumenerǵijas pieprasījumu, elektroenergijas cenu un neparedzētus notikumus elektrostacijās [11].

Varmelast.dk nenosaka siltumenergijas cenu tirdzniecībai. Siltumenerǵijas cena tiek noteikta divpusīgās vienošanās (bilateral agreements) starp VEKS, CTR, HOFOR no vienas puses un kogenerācijas un atkritumu sadedzināšanas stacijām no otras puses. Divpusīgās vienošanās ir konfidenciāla informācija. Dažādas shēmas tiek pielietotas, lai noteiktu siltumenerǵijas pārdošanas cenu. Siltumenerğijas cena tiek noteikta, ievērojot bezpel̦nas principu (non-profit principle) [5].

Kopenhāgenas centralizētās siltumapgādes sistēmas attīstība

Patlaban Kopenhāgenas centralizētā siltumapgādes sistēma atrodas pārejā uz 4. paaudzes centralizēto siltumapgādes sistēmu (6. tab.) [1]:

- fosilā kurināmā (ogles un gāze) elektrostacijas tiks aizvietotas ar biomasu (salmi un koksne);

5. tabula. Siltumenerǵijas ražǒ̌anas plānu koriǵējumi: tekošās dienas (intraday) tirgus [11], [5]

Laiks	Dalīnieks	Darbiba
3:00	Ražotāji	Datu koriǵējumi: ražotāj nosūta koriǵ̄̄to informāciju par siltuma avota pieejamību un tā robežizmaksām
3:45	Varmelast.dk	Plāna koriǵėjumi: Varmelast.dk nosūta koriġētos siltumenerǵjijs plānus nākamajām 43 stundām
7:00	Ražotāji	Datu koriǵējumi: ražotāi nosūta koriǵāto informāciju par siltuma avota pieejamību un tā robežizmaksām
10:30	Varmelast.dk	Plāna koriǵējumi: Varmelast.dk nosūta koriǵētos siltumenerǵjijs plānus nākamajām 39 stundām
15:00	Ražotāi	Datu koriǵējumi: ražotāj nosūta koriǵēto informāciju par siltuma avota pieejamību un tā robežizmaksām
15:45	Varmelast.dk	Plāna koriǵējumi: Varmelast.dk nosūta koriġ̄̄tos siltumenerǵjijas plānus nākamajām 55 stundām
19:00	Ražotāji	Datu koriǵējumi: ražotāj nosūta koriǵēto informāciju par siltuma avota pieejamību un tā robežizmaksām
19:45	Varmelast.dk	Plāna koriǵjejumi: Varmelast.dk nosūta koriǵētos siltumenerǵijas plānus nākamajai 51 stundai
23:00	Ražotaji	Datu koriǵéjumi: ražotāji nosūta koriğēto informāciju par siltuma avota pieejamību un tā robežizmaksām
23:45	Varmelast.dk	Plāna koriǵējumi: Varmelast.dk nosūta koriǵēto siltuma plānu nākamajām 47 stundām

6. tabula. CSS attīstība: pāreja no pirmās paaudzes uz ceturtās paaudzes siltumapgādes sistēmu [19], [20]

Paaudze	CSS mērki	CSS infrastruktừa	Siltumnesējs	Temperatūra	Efektivitāte	Siltuma ražošana	Caurules
1. paaudze (1880-1930)	Komforts un samazināts risks	Valdībā konkurējošas siltumapgādes infrastruktūras	Tvaiks	$<200^{\circ} \mathrm{C}$	~ 20%	Oglu tvaika katli un dažas TEC	Izolētas tērauda caurules
2. paaudze $(1930-1980)$	Kurināmā ietaupijums un izmaksu samazinājums	CSS attistība un izplatība rentablai TEC izmantošanai	Karstais ūdens zem spiediena	$>100^{\circ} \mathrm{C}$	~55\%	Oglu, mazuta TEC un ūdens sildkatli	Izolētas tērauda caurules
3. paaudze $(1980-2020)$	Piegādes drošums	Siltumapgādes infrastruktūras, kuras balstās uz fosilā kurināmā	Karstais ūdens zem spiediena	$<100^{\circ} \mathrm{C}$	~ 70\%	Lielas TEC, decentralizētās TEC, biomasas un atkritumu vai fosilā kurināmā katli	Rūpnieciski izolētas tērauda caurules
4. paaudze (2020-2050)	Pāreja uz ilgtspējīgu enerǵjijas sistēmu	Siltumapgādes infrastruktūras, kuras nebalstās uz fosilā kurināmā	Ūdens ar pazeminātu temperatūru	$30-70^{\circ} \mathrm{C}$	~ 90\%	Zemas temperatūras siltuma pārstrāde un atjaunīgie energoresursi	Rūpnieciski izolētas elastigas caurules

- akumulācijas kapacitāte tiks palielināta (lielas akumulācijas tvertnes un uzglabāšanas krātuves (storage pit));
- centralizēto aukstumapgādes sistēmu paplašināšana. Pārsvarā aukstuma akumulācija, aukstuma un siltuma koǵenerācija un sezonālās akumulācijas darbojas simbiozē ar centralizēto siltumapgādes sistēmu;
- jaunu siltumenerǵijas patērētāju (ar patēriņu virs 1000 GWh) pieslēgšana pie centralizētās siltumapgādes sistēmas;
- pārvades siltumtīklu paplašināšana;
- lielas jaudas siltumsūkņu un elektrisko katlu uzstādīšana mainīgās elektroenerǵijas generācijas fluktuāciju dzēšanai;
- pēc 2020. gada siltumapgādes sistēma ar tvaika siltumnesēju tiks pilnībā aizvietota ar karsto ūdeni;
- siltumtīklos, kur par siltumnesēju izmantots pārkarsētais ūdens ($165{ }^{\circ} \mathrm{C}$), tiks samazināta siltumnesēja temperatūra. Pārkasētais ūdens tiks izmantots rūpniecības vajadzībām;
- tiks samazināta siltumnesēja temperatūra un zudumi siltumtīklos.

Kopenhāgenas CSS attīstība turpinās. Kā jau minēts, šī attīstība paredz CSS efektivitātes palielināšanu, siltumnesēja temperatūras samazināšanu, pāreju no fosiliem uz atjaunīgiem energoresursiem, t.sk. mainīgās g̀enerācijas integrāciju enerǧijas ražošanas procesā. Notiek CSS mērk̦a pārorientācija no piegādes drošuma uz klimatneitralitāti un balansēšanas pakalpojumu nodrošinājumu energosistēmā.

Kopenhāgenas siltumapgādes sistēmas mācības

Veicot Kopenhāgenas CSS un siltumenerǵijas tirgus apskatu, tika gūta teorētiskā pieredze, kuru var pielietot, lai pilnveidotu un uzlabotu Rīgas CSS un siltumenerǵijas tirgus darbību.

Kopenhāgenas siltumapgādes sistēma ir universāla un paredz elastīgu siltumenerǵijas ražošanas avota un kurināmā izvēli. Siltumapgādes sistēmas struktūra ir integrēta, tādējādi pārvades uzñēmumi var izvēlēties siltumenerǵijas ražotāju starp dažādiem pieejamiem enerǵijas ražošanas avotiem. Izvēle pamatojas uz ekonomiskiem un vides principiem.

Salīdzinot Rīgas pilsētas un Kopenhāgenas CSS (7. tab.) var konstatēt, ka Rīgas centralizētajai siltumapgādes sistēmai vēl joprojām ir lieliskas iespējas izaugsmei un efektivitātes paaugstināšanai.

Runājot par Rīgas pilsētas CSS attīstības iespējām ilgtermiņā, varētu atzīmēt šādus perspektīvos attīstības virzienus:

- jauno klientu, to skaitā rūpniecības uzn̦ēmumu, piesaistī-
šana centralizētai siltumapgādei;
- centralizēto aukstumapgādes tīklu izveide, īpaši jaunajās apbūves vietās;
- atsevišķo siltumtīklu zonu apvienošana, tostarp Daugavas labā un kreisā krasta siltumtīklu apvienošana;
- siltuma akumulatoru plašāka izmantošana CSS;
- neatkarīga tirgus operatora izveide (līdzīgi Varmelast.dk);
- nākamās dienas ikstundas tirgus principu ieviešana;

7. tabula. Kopenhāgenas un Rīgas centralizēto siltumapgādes sistēmu un siltumenerǵijas tirgu salīidzinājums

Rāditājs	Kopenhāgena	Rīga
ledzivotāju skaits	1,3 milj. cilv. [23]	0,6 milj. cilv. [24]
Pieslēgums pie CSS	98\% [22]	75\% [21]
CSS	Integrētã siltumapgādes sistēma	Labā un kreisā krasta CSS
CSS mērkis	Pärēja no siltumenerǵijas piegādes drošuma uz ilgtspējīgu enerǵijas sistēmu	Siltumenergijas piegādes drošums
Pamatkurināmais	Atjaunīgie energoresursi un atkritumi, pieaug elektribas un samazinās dabasgāzes un oglu izmantošana	Dabasgāze un škelda
CSS garums	1660 km [1], [25]	650 km [27]
Siltumnesēja temperatūra	$<100^{\circ} \mathrm{C}$	$<120^{\circ} \mathrm{C}$
Zudumi siltumtiklos	8\% [26]	11,9\% [27]
Īpatnējais siltumenerǵjijas patēriņ̣ ēkās	$100-200 \mathrm{kWh} / \mathrm{m}^{2}$ [19]	ap $200 \mathrm{kWh} / \mathrm{m}^{2}$ [27]
Siltumenergijas tirgus	Nākamās dienas ikstundas tirgus Tekošāa dienas ikstundas tirgus	Nedèlas tirgus
Siltumenerǵjias ražošanas plānošana	Varmelast.dk	AS "Rigas Siltums"
Siltumenerǵjijas ražošana	Ražǒanas uzñēmumi	Ražošnas uzñèmumi, t.sk. AS "Rīgas Siltums"
Siltumenerǵijas piegāde līdz patēr̄̄tajiem	Pārvades un sadales uzṇēmumi	AS "Rīgas Siltums"

- siltumnesēja temperatūras un zudumu siltumtīklos mazināšana, CSS virzība uz ceturtās paaudzes siltumapgādes sistēmu.

Salīdzinot Kopenhāgenas siltumenerǵijas tirgu ar siltumenerǵijas tirgu Rīgā, secināms, ka siltumenerǵijas tirgus pilnveides iespējas paredz pāreju no nedēlaas izsolēm uz nākamās dienas un turpmāk - nākamās dienas ikstundas izsolēm. Rīgas pilsētas CSS siltumenergijijas iepirkšanas sistēma ar nedèlas izsoles soli nav tik optimāla, jo nedēlas griezumā nav iespējams ievērot strauji mainīgas sistēmas parametrus - klimatiskos apstākḷus un tā rezultātā siltuma slodzes, katlumāju un kog̀enerācijas staciju faktisku pieejamību (avārijas remontus), mainīgās elektroenerǵijas cenas Nord Pool biržā, CO_{2} kvotu un energoresursu cenas. Esošā siltumenerǵijas iepirkuma organizācijas sistēma nav neitrāla attiecībā pret

Izmantotie avoti

[1] District energy. Energy efficiency for urban areas, 2018.
[2] Ørsted prezentācijas "Ørsted vision and experiences with biomass" materiäli. https://edepot.wur.n//444861
[3] Danish Energy Agency. Energy statistic 2017. Data, tables, statistics and maps. [4] Skaidrojums vārdam autoproducer: https://ec.europa.eu/eurostat/documents/38154/42195/ELE_HEAT_instructions. pdf/cb797574-951d-470e-9d3f-9924b86ed3fd
[5] N. Bertelsen, U. Petersen. Thermal Energy Storage in Great Copenhagen. Master's Thesis, 2017.
[6] C. Matson, prezentācijas "District cooling and district heating - Danish Experience" materiäli, 2017.
[7] Smart cities. Creating livable, sustainable and prosperous societies, 2018.
[8] J. Boldt, prezentācijas "The district heating system in great Copenhagen area - in a free power market" materiali, 2018.
[9] District Heating in the Copenhagen Region. https://stateofgreen.com/en/partners/ramboll/ solutions/district-heating-in-the-copenhagenregion/
[10] B. Bach, J. Werling, T. Ommen, M. Munster,
J. M. Morales, B. Elmegaard. Integration of large-
scale heat pumps in the district heating system of Great Copenhagen. Energy, 2016.
[11] Par Varmelast.dk: https://www.varmelast. dk/en/dh-network
[12] Nordic Council of Ministers. Nordic heating
and cooling. Nordic approach to EU's heating and cooling strategy, 2017.
[13] CTR. District Heating - Close Up, 2018.
visiem tirgus dalībniekiem un tehnoloǵijām. Tas mazina konkurenci un rezultātā var negatīvi iespaidot siltumenergíijas cenu pilsētā.

Rīgā siltumenerǵjijas tirgus izsoḷu organizators vienlaicīgi ir gan siltumenerğijas ražotājs, gan arī siltumenerğijas piegādātājs no citiem ražotājiem līdz patērētājiem.

Nodalot iespējas uzṇēmumam vienlaicīgi nodarboties ar siltumenerǵijas ražošanu un siltumenerg̣ijas piegādi no ražotājiem līdz patērētājiem, tiktu veicināta vienlīdzīga attieksme pret visiem siltumenerǵijas ražotājiem.

No minētā izriet vēl viena iespēja pilnveidot siltumenergijijas tirgu Rīgā - nodibināt uzn̦ēmumu (līdzīgu Varmelast.dk Kopenhāgenā), kurš nodarbotos tikai ar siltumenerğijas ražošanas plānošanu un pats nebūtu saistīts ar siltumenerğijas ražošanu. E\&P
[14] Komunikācija ar Varmelast.dk.
[15] Par Amagerværket: https://da.wikipedia. org/wiki/Amagerv\%C3\%A6rket
[16] Par Avedøre TEC: https://en.wikipedia.org/ wiki/Aved\%C3\%B8re_Power_Station [17] Par H. C. Ørsted TEC: https://en.wikipedia.org/wiki/
H._C._\%C3\%98rsted_Power_Station
[18] Par Svanemølle TEC: https://en.wikipedia. org/wiki/Svanem\%C3\%B8lle_Power_Station [19] H. Lund, S. Werner, R. Wiltshire, S. Svedsen, J.E. Thorsen, F. Hvelplund, B.V. Mathiesen. 4th Generation District Heating (4GDH). Integrating smart thermal grids into sustainable energy system. Energy (68), 2014.
[20] Par siltumapgādes sistēmas paaudzēm:
http://ecopolis.danfoss.com/\#open-source-
energy
[21] 0. Linkevičs. Rīgas siltumapgādes sistēmas
attīstibas tendences. "Enerǵija un Pasaule" 2013/3,50-57.
[22] Par CSS Dānijā https://www.euroheat.org/ knowledge-hub/district-energy-denmark/ [23] ledzivotãju skaits Rīgā http://worldpopula-tionreview.com/world-cities/riga-population/ [24] ledzīvotaju skaits Kopenhāgenā http://worldpopulationreview.com/world-cities/ copenhagen-population/
[25] Par CSS un aukstumapgādi http://www. engineering-timelines.com/why/lowCarbonCopenhagen/copenhagenDistrictHeating_03.asp [26] M. Harrestrup, S. Svendsen. Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings: A case study of the Copenhagen district heating area in Denmark. EnergyPolicy 68, 2014.
[27] AS "Rigas Siltums" valdes zinojums par darbību 2017./2018. gadā.

[^0]: ${ }^{1}$ Uzņēmumi, kas ražo elektroenerǵiju un/vai siltumenerǵiju, kuru pilnībā vai daļēji izmanto savām vajadzz̄̄̄̄̄̄, lai veicinātu pamatdarbību. Tas var būt privāts vai publisks uzñēmums [4].

